Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
AIDS ; 37(10): 1565-1571, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: covidwho-2327070

RESUMEN

BACKGROUND: Data supporting dementia as a risk factor for coronavirus disease 2019 (COVID-19) mortality relied on ICD-10 codes, yet nearly 40% of individuals with probable dementia lack a formal diagnosis. Dementia coding is not well established for people with HIV (PWH), and its reliance may affect risk assessment. METHODS: This retrospective cohort analysis of PWH with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) PCR positivity includes comparisons to people without HIV (PWoH), matched by age, sex, race, and zipcode. Primary exposures were dementia diagnosis, by International Classification of Diseases (ICD)-10 codes, and cognitive concerns, defined as possible cognitive impairment up to 12 months before COVID-19 diagnosis after clinical review of notes from the electronic health record. Logistic regression models assessed the effect of dementia and cognitive concerns on odds of death [odds ratio (OR); 95% CI (95% confidence interval)]; models adjusted for VACS Index 2.0. RESULTS: Sixty-four PWH were identified out of 14 129 patients with SARS-CoV-2 infection and matched to 463 PWoH. Compared with PWoH, PWH had a higher prevalence of dementia (15.6% vs. 6%, P  = 0.01) and cognitive concerns (21.9% vs. 15.8%, P  = 0.04). Death was more frequent in PWH ( P  < 0.01). Adjusted for VACS Index 2.0, dementia [2.4 (1.0-5.8), P  = 0.05] and cognitive concerns [2.4 (1.1-5.3), P  = 0.03] were associated with increased odds of death. In PWH, the association between cognitive concern and death trended towards statistical significance [3.92 (0.81-20.19), P  = 0.09]; there was no association with dementia. CONCLUSION: Cognitive status assessments are important for care in COVID-19, especially among PWH. Larger studies should validate findings and determine long-term COVID-19 consequences in PWH with preexisting cognitive deficits.


Asunto(s)
COVID-19 , Demencia , Infecciones por VIH , Humanos , COVID-19/complicaciones , SARS-CoV-2 , Prueba de COVID-19 , Estudios Retrospectivos , Infecciones por VIH/complicaciones , Factores de Riesgo , Cognición
2.
J Neuropathol Exp Neurol ; 82(4): 283-295, 2023 03 20.
Artículo en Inglés | MEDLINE | ID: covidwho-2274412

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is continually evolving resulting in variants with increased transmissibility, more severe disease, reduced effectiveness of treatments or vaccines, or diagnostic detection failure. The SARS-CoV-2 Delta variant (B.1.617.2 and AY lineages) was the dominant circulating strain in the United States from July to mid-December 2021, followed by the Omicron variant (B.1.1.529 and BA lineages). Coronavirus disease 2019 (COVID-19) has been associated with neurological sequelae including loss of taste/smell, headache, encephalopathy, and stroke, yet little is known about the impact of viral strain on neuropathogenesis. Detailed postmortem brain evaluations were performed for 22 patients from Massachusetts, including 12 who died following infection with Delta variant and 5 with Omicron variant, compared to 5 patients who died earlier in the pandemic. Diffuse hypoxic injury, occasional microinfarcts and hemorrhage, perivascular fibrinogen, and rare lymphocytes were observed across the 3 groups. SARS-CoV-2 protein and RNA were not detected in any brain samples by immunohistochemistry, in situ hybridization, or real-time quantitative PCR. These results, although preliminary, demonstrate that, among a subset of severely ill patients, similar neuropathological features are present in Delta, Omicron, and non-Delta/non-Omicron variant patients, suggesting that SARS-CoV-2 variants are likely to affect the brain by common neuropathogenic mechanisms.


Asunto(s)
COVID-19 , Accidente Cerebrovascular , Humanos , SARS-CoV-2 , Neuropatología
3.
J Med Internet Res ; 24(8): e40384, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: covidwho-2009809

RESUMEN

BACKGROUND: Electronic health records (EHRs) with large sample sizes and rich information offer great potential for dementia research, but current methods of phenotyping cognitive status are not scalable. OBJECTIVE: The aim of this study was to evaluate whether natural language processing (NLP)-powered semiautomated annotation can improve the speed and interrater reliability of chart reviews for phenotyping cognitive status. METHODS: In this diagnostic study, we developed and evaluated a semiautomated NLP-powered annotation tool (NAT) to facilitate phenotyping of cognitive status. Clinical experts adjudicated the cognitive status of 627 patients at Mass General Brigham (MGB) health care, using NAT or traditional chart reviews. Patient charts contained EHR data from two data sets: (1) records from January 1, 2017, to December 31, 2018, for 100 Medicare beneficiaries from the MGB Accountable Care Organization and (2) records from 2 years prior to COVID-19 diagnosis to the date of COVID-19 diagnosis for 527 MGB patients. All EHR data from the relevant period were extracted; diagnosis codes, medications, and laboratory test values were processed and summarized; clinical notes were processed through an NLP pipeline; and a web tool was developed to present an integrated view of all data. Cognitive status was rated as cognitively normal, cognitively impaired, or undetermined. Assessment time and interrater agreement of NAT compared to manual chart reviews for cognitive status phenotyping was evaluated. RESULTS: NAT adjudication provided higher interrater agreement (Cohen κ=0.89 vs κ=0.80) and significant speed up (time difference mean 1.4, SD 1.3 minutes; P<.001; ratio median 2.2, min-max 0.4-20) over manual chart reviews. There was moderate agreement with manual chart reviews (Cohen κ=0.67). In the cases that exhibited disagreement with manual chart reviews, NAT adjudication was able to produce assessments that had broader clinical consensus due to its integrated view of highlighted relevant information and semiautomated NLP features. CONCLUSIONS: NAT adjudication improves the speed and interrater reliability for phenotyping cognitive status compared to manual chart reviews. This study underscores the potential of an NLP-based clinically adjudicated method to build large-scale dementia research cohorts from EHRs.


Asunto(s)
COVID-19 , Demencia , Anciano , Algoritmos , Prueba de COVID-19 , Cognición , Demencia/diagnóstico , Registros Electrónicos de Salud , Humanos , Medicare , Procesamiento de Lenguaje Natural , Reproducibilidad de los Resultados , Estados Unidos
4.
J Neuroophthalmol ; 42(2): 163-172, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1700156

RESUMEN

BACKGROUND: The literature on neurological manifestations, cerebrospinal fluid analyses, and autopsies in patients with COVID-19 continues to grow. The proposed mechanisms for neurological disease in patients with COVID-19 include indirect processes such as inflammation, microvascular injury, and hypoxic-ischemic damage. An alternate hypothesis suggests direct viral entry of SARS-CoV-2 into the brain and cerebrospinal fluid, given varying reports regarding isolation of viral components from these anatomical sites. EVIDENCE ACQUISITION: PubMed, Google Scholar databases, and neuroanatomical textbooks were manually searched and reviewed. RESULTS: We provide clinical concepts regarding the mechanisms of viral pathogen invasion in the central nervous system (CNS); advances in our mechanistic understanding of CNS invasion in well-known neurotropic pathogens can aid in understanding how viruses evolve strategies to enter brain parenchyma. We also present the structural components of CNS compartments that influence viral entry, focusing on hematogenous and transneuronal spread, and discuss this evidence as it relates to our understanding of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). CONCLUSIONS: Although there is a paucity of data supporting direct viral entry of SARS-CoV-2 in humans, increasing our knowledge of the structural components of CNS compartments that block viral entry and pathways exploited by pathogens is fundamental to preparing clinicians and researchers for what to expect when a novel emerging virus with neurological symptoms establishes infection in the CNS, and how to design therapeutics to mitigate such an infection.


Asunto(s)
COVID-19 , Enfermedades del Sistema Nervioso , Encéfalo , Sistema Nervioso Central , Humanos , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA